ADVrider

Go Back   ADVrider > Bikes > GSpot > Parallel Universe
User Name
Password
Register Inmates Photos Site Rules Search Today's Posts Mark Forums Read

Reply
 
Thread Tools Search this Thread Display Modes
Old 01-05-2011, 02:06 PM   #1
goldo OP
Adventurer
 
Joined: May 2010
Location: SE
Oddometer: 29
f800 gs and Heated clothes

I went to my local piece of crap dealer for some help on this, and they basically all made it to six grade and no further, with this simple question. How much heated clothing (Gerbing) can I run before I have to worry about draining the battery. I'm talking about just going down the road, not stop n go. I understand it doesn't have an alternator like the 12gs and that it puts out 400 watts, but I don't know how much of that 400 watts the bike uses with everything that it runs (lites, blinkers, pumps etc.) Does anybody run this clothing? any problems?
I've run gloves and vest with no problems, now I want to run pants. any thoughts, info would be appreciated. If you live in the Atlanta area and need assistance with BMW anything- avoid BMW of Marietta- they treat you like you're a pain in the arsse.
goldo is offline   Reply With Quote
Old 01-05-2011, 02:13 PM   #2
Lost Rider
Roadie
 
Lost Rider's Avatar
 
Joined: Oct 2006
Location: Ventura County, California Republic
Oddometer: 3,150
I've ran Gerbings jacket, gloves, socks and grips on full for extended rides with no problems. Never used pants, but you should be able to get the math of what I used to compare to the draw of the pant.
Usually I keep the high beam off when I'm doing that, and ALWAYS carry a cable to jump start the bike... ( I use a 8 ft. wire that came from an old air pump I had with a SAE connector on it)

Hope that helps.





BTW, I've been to that dealer and agree....
__________________
Photography for me is not about recreating what I saw through
the viewfinder but to show people the way I want to see the world.

LostRider.com
Lost Rider is offline   Reply With Quote
Old 01-05-2011, 02:28 PM   #3
goldo OP
Adventurer
 
Joined: May 2010
Location: SE
Oddometer: 29
Thanks ChiTown

Can you start your bike by plugging into the SAE on the dash?
goldo is offline   Reply With Quote
Old 01-05-2011, 02:33 PM   #4
goldo OP
Adventurer
 
Joined: May 2010
Location: SE
Oddometer: 29
on second thought

I guess that's not considered SAE, so do you have an extra SAE under the seat already hooked up?
goldo is offline   Reply With Quote
Old 01-05-2011, 02:36 PM   #5
Lost Rider
Roadie
 
Lost Rider's Avatar
 
Joined: Oct 2006
Location: Ventura County, California Republic
Oddometer: 3,150
Yeah, whatever that pigtail hooked up to the battery that comes stock by the handlebars is.

Yes, I've jumped my bike many, many times from that cable with a somewhat small wire with bare ends going to a car battery.

I've been told it's real bad for the motorcycle battery to jump start it with a car, but when stuck on the road, caution isn't 1st...

I did put a 20amp fuse in the OEM tail though.
__________________
Photography for me is not about recreating what I saw through
the viewfinder but to show people the way I want to see the world.

LostRider.com
Lost Rider is offline   Reply With Quote
Old 01-05-2011, 02:56 PM   #6
GB
Mod Squad
 
GB's Avatar
 
Joined: Aug 2002
Location: Toronto, ON
Oddometer: 55,591
Put a digital voltmeter and watch what happens when you turn it on.

On my bike, it runs at 13.9 volts and when I turn on the Gerbing heated jacket at highway speeds, it stays put or goes to 13.7 with the heated grips on high.

With the heated jacket, heated pants, heated socks and heated gloves, it drops to 12.4 volts and quickly goes to 11.9 volts as soon as I slow down.

So with just a heated jacket and heated grips on, you have plenty of juice.. but I'd still recommend you add a digital voltmeter. There's someone in Vendors selling them. A friend got one and it works as advertised.
__________________
ADV decals, patches & flag? Here
GB is offline   Reply With Quote
Old 01-05-2011, 03:46 PM   #7
Hucker
Lost
 
Joined: Dec 2009
Location: Southern AZ
Oddometer: 673
I run a 95-W heated jacket and unk-W pants on my '11. With grips on high, I can see the lights dim each time the heat-troller cycles. The other morning I thought I had a vehicle with amber lights on behind me until I figured out it was my lights reflecting off the super shiny car in front of me...
Hucker is offline   Reply With Quote
Old 01-05-2011, 04:51 PM   #8
satchmo3
Adventurer
 
satchmo3's Avatar
 
Joined: May 2008
Location: Portland, Oregon
Oddometer: 88
I did SF to NY last month (via Texas) on my F8 with a tourmaster heated jacket and the factory heated grips. Many mornings started out in high 20's/low 30's so jacket and grips were cranked often, for long periods of time. No problems. No experience with heated pants. BTW the tourmaster jacket is great for the money.
satchmo3 is offline   Reply With Quote
Old 01-06-2011, 12:37 PM   #9
frtzl
Mors longa, vita brevis
 
frtzl's Avatar
 
Joined: Jan 2007
Location: Wilmington, DE
Oddometer: 231
I have ridden my F650GStwin with a tourmaster jacket, hand warmers, and LED driving lights on for days on end without any hard starts or other battery problems. I do try to ride the last few miles of the trip with things turned off or down to make sure that I give the battery a chance to catch up.

I have the Signal Dynamics charge indicator LED:

http://www.customdynamics.com/LED_battery_gauge.htm

And as long as I keep the revs up (4000+), which isn't a problem when riding, it never goes off the green level. If I get stopped at a light or in traffic, it may drop into yellow, and because the Tourmaster liner pulses (PWM) the heating elements, it can put on a show going Green-Red-Green-Red rapidly after idling for a while. Adding more revs or switching off the driving lights usually stabilizes the charge for me.

There was a thread a long time back about the available capacity of the F800, lemme see if I have it Evernote-d... Found it! I seem to have lost the original posters name, but it's from a thread called "F800GS/F650GS Electrical System Capabilities"

Quote:

Hi folks.
I can see this thread has been hanging around for a while without a lot of empirical data and some of the folks I like over at F800 riders forum (those that don't HATE BMW) have been asking electrical questions as well.

I used to be a licensed industrial electrician and an automotive service manager for Volvo for many years. I used a Fluke 867B hand held graphical multimeter (most accurate hand held in the world) and a Fluke 112 (accurate enough for some things) as well as a snap-on ac/dc amp clamp to make these measurements on a 2009 F800GS

When you turn your engine off but leave the key on current draw on the battery is as follows:

Headlight switched to low beam, kill switch in KILL position: 1.74 amps

Headlight switched to low beam, kill switch in RUN position: 1.81 amps

with headlight switched to high beam: 5.67 amps

Notes: Measured with Fluke 867B current shunt, extremely accurate. Side stand makes no difference in current draw, only kill switch.


When you turn your bike off with the key the current draw is as follows:
830 milliamps for 3.5 seconds, 170 milliamps for next 3 seconds, 88 milliamps for next 54 seconds, 1.316 milliamps thereafter

Notes: Measured with Fluke 867B current shunt, extremely accurate. the spool down is just computer and CAN-bus crap, 1.316 milliamps is a very low constant draw to run the clock and save volatile memory!


When the bike is running, headlight on low beam, battery fully charged, amp shunt between a battery post and connector to factor out residual charging you come to this.

Bike running, low beam headlight, nothing else on thats switchable: 10.8 amps
Bike running, high beam headlight, nothing else on thats switchable: 14.9 amps

Heated grips are hard to quantify. I am going to list the maximum draw when the grips are first turned on but note that as they heat up they begin cycling on and off once per second with progressively less on time as the grips reach maximum temperature. Sitting in traffic on a 50F day the grips will draw less on high then they will on high while going 80 MPH on a 20F day but the absolute maximums are:

Heated grips on high, grips cold: 3.38 amps
Heated grips on low, grips cold: 2.04 amps

Note: Once again, the above is a worst case draw, as the grips heat up this typically falls to half or lower. If you are riding through Wyoming or Siberia during a cold winter day, this maximum draw might be continues, if it is above freezing this draw certainly wont be this high. Note also, the CAN-bus will shut down the heated grips if it needs the capacity to charge the battery. This has happened to me while idling with the high beams on and heated gear running. Measurement taken as above but also factoring out running current. Pretty accurate, could have been more accurate but didn't feel like tearing into the wire harness.


The cooling fan is certainly not a constant draw unless you are idling and the ambient temperature is well over 100F, or your radiator is blocked by crud :) When it is on...

Cooling fan draw: 4.7 amps

Measurement made with ac/dc current clamp clamped around cooling fan wire which was a BITCH to get to with my current clamp but readings are very accurate.


All the above is useless unless we know what the alternator is capable of. I measured the alternator when it was as hot as I could get it from idling the bike for long periods until the fan started cycling on and off. If you are riding in anything but the hottest weather the output will be slightly higher.

I used a variable carbon load and applied increasing load until the system voltage fell to 13.6 volts at various engine RPM's. I picked this voltage because the voltage regulator is sure to be full off at this point yet any AGM battery will not be discharging at this voltage unless the temperature is truly extreme. I could discuss why I didn't use 12.8 or 14.2 but that is for a battery or general electrical thread.

1,280 RPM (idle) 17.7 amps at 13.6 volts
3,000 RPM 25.9 amps at 13.6 volts
4,500-7,500 RPM 27.8 amps at 13.6 volts

What does this mean??? For those of you that use terms like "electromotive force and intensity of current" Do the math, if there is some figure you really desire, ask away.

For mere mortals: If you like adding options, you are in luck, this is not a massive touring alternator but you sure didn't buy a KLR.

What loads you can safely add depends on how you are going to use it and how you use the bike.

If you plan to walk out to the garage and eye your bike as it idles for hours on end, not very much! Without any switchable loads on you have just 6.9 amps to play with, that translates to roughly 98 watts, depending on how the manufacture rated it's product as watt draw at say 14.2 volts will typically translate into fewer watts at 13.6 volts.

Screaming down the highway stopping only when you need gas you can safely add 140 watts of accessories, even with the high beams and heated grips on high the whole way. Actually you can add a bit more because as system starts to get dragged down to, say, 13.6 volts the battery will still be fine but all of our accessories will draw about 5% less then stated.

Is it bad for the charging system to heavily load it? Not even slightly bad. A PM alternator is at full load the whole time the bike is running. As apposed to how a car alternator works, a PM voltage regulator sinks excess current to ground to regulate the voltage so it is actually the same to the alternator and easier on the voltage regulator to be under more load.

Is it bad to draw the system below 13.6 volts? Yes, even at idle it is, only bad for the battery and only a little bad as long as it is above 13.6 the majority of the time.

I could go on forever about the characteristics of AGM batteries and what kills them but that too is for a different thread.

Hope this helps, feel free to ask about anything you don't understand. I like this forum because it does not spend endless hours trashing BMW and will check back often.

Oh, some perspective. A 2008 KLR650 has a 360 watt alternator, older ones had just 192 watts. A 2008 KTM 990 adventure has 450 watts. Most other similar sized bikes hover around this area so BMW is in about the middle of the road on alternator capacity.

That said, neither the KTM's or Kawasaki's alternators start to produce 90% 0f their rated output until above 5,000 RPM. BMW's alternator produces 90% of rated output at just 2,700 RPM. BMW placed a very good alternator in this bike by comparison.


__________________
"A word of advice; if anyone uses the phrase 'as the crow flies' in your presence, slap him immediately. You are bound to want to slap him some time later." Metaljockey

My rides:
2009 BMW F650GS (The Cruise Basselope)
2009 Yamaha Zuma 125 (Sold due to new commute)
2000 BMW R1100R (Blaue Engel) (Traded)
2006 DL650 Euro Black, lightly customized (Godzuki) (Sold)
frtzl is online now   Reply With Quote
Old 01-06-2011, 12:38 PM   #10
JRWooden
Beastly Adventurer
 
Joined: Jul 2008
Location: The great state of confusion
Oddometer: 4,172
There's a big thread on the topic here:

http://www.advrider.com/forums/showthread.php?t=395505

The "crude" answer seemed to be you have about 105 - 140 watts to mess with... and if you want to push the envelope you probably want to invest in one of the voltage monitoring gadgets.

Which brings me round to another question ... Since BMW seems to be doing away with the miles-to-empty feature on our bikes with the latest firmware, it sure would be nice of them to add battery voltage as one of the display options ... it is there on the 650-XCountry.
JRWooden is offline   Reply With Quote
Old 01-06-2011, 12:40 PM   #11
daq7
Studly Adventurer
 
daq7's Avatar
 
Joined: Aug 2009
Location: Denver Colorado Area
Oddometer: 571
I can tell you for a fact that I hooked two jackets and gloves in parallel and drained my batter. It probably would not have done so had they been hooked in series.

But be careful. I am pretty sure you will be fine with jacket, gloves, and pants, but I wouldn't push it much beyond that.

Fortunately i was at the dealership picking up my wife's bike, so they jump started me....
daq7 is offline   Reply With Quote
Old 01-06-2011, 01:45 PM   #12
goldo OP
Adventurer
 
Joined: May 2010
Location: SE
Oddometer: 29
Thanks for all the info guys

Thanks for the input!
goldo is offline   Reply With Quote
Old 03-06-2012, 09:29 AM   #13
SpaceManSpiff
Man of Mystery
 
SpaceManSpiff's Avatar
 
Joined: Mar 2007
Location: Tucson, Arizona
Oddometer: 1,075
older thread, I know...but with the qoute by frztl in white for legibility

"Hi folks.
I can see this thread has been hanging around for a while without a lot of empirical data and some of the folks I like over at F800 riders forum (those that don't HATE BMW) have been asking electrical questions as well.

I used to be a licensed industrial electrician and an automotive service manager for Volvo for many years. I used a Fluke 867B hand held graphical multimeter (most accurate hand held in the world) and a Fluke 112 (accurate enough for some things) as well as a snap-on ac/dc amp clamp to make these measurements on a 2009 F800GS

When you turn your engine off but leave the key on current draw on the battery is as follows:

Headlight switched to low beam, kill switch in KILL position: 1.74 amps

Headlight switched to low beam, kill switch in RUN position: 1.81 amps

with headlight switched to high beam: 5.67 amps

Notes: Measured with Fluke 867B current shunt, extremely accurate. Side stand makes no difference in current draw, only kill switch.


When you turn your bike off with the key the current draw is as follows:
830 milliamps for 3.5 seconds, 170 milliamps for next 3 seconds, 88 milliamps for next 54 seconds, 1.316 milliamps thereafter

Notes: Measured with Fluke 867B current shunt, extremely accurate. the spool down is just computer and CAN-bus crap, 1.316 milliamps is a very low constant draw to run the clock and save volatile memory!


When the bike is running, headlight on low beam, battery fully charged, amp shunt between a battery post and connector to factor out residual charging you come to this.

Bike running, low beam headlight, nothing else on thats switchable: 10.8 amps
Bike running, high beam headlight, nothing else on thats switchable: 14.9 amps

Heated grips are hard to quantify. I am going to list the maximum draw when the grips are first turned on but note that as they heat up they begin cycling on and off once per second with progressively less on time as the grips reach maximum temperature. Sitting in traffic on a 50F day the grips will draw less on high then they will on high while going 80 MPH on a 20F day but the absolute maximums are:

Heated grips on high, grips cold: 3.38 amps
Heated grips on low, grips cold: 2.04 amps

Note: Once again, the above is a worst case draw, as the grips heat up this typically falls to half or lower. If you are riding through Wyoming or Siberia during a cold winter day, this maximum draw might be continues, if it is above freezing this draw certainly wont be this high. Note also, the CAN-bus will shut down the heated grips if it needs the capacity to charge the battery. This has happened to me while idling with the high beams on and heated gear running. Measurement taken as above but also factoring out running current. Pretty accurate, could have been more accurate but didn't feel like tearing into the wire harness.


The cooling fan is certainly not a constant draw unless you are idling and the ambient temperature is well over 100F, or your radiator is blocked by crud :) When it is on...

Cooling fan draw: 4.7 amps

Measurement made with ac/dc current clamp clamped around cooling fan wire which was a BITCH to get to with my current clamp but readings are very accurate.


All the above is useless unless we know what the alternator is capable of. I measured the alternator when it was as hot as I could get it from idling the bike for long periods until the fan started cycling on and off. If you are riding in anything but the hottest weather the output will be slightly higher.

I used a variable carbon load and applied increasing load until the system voltage fell to 13.6 volts at various engine RPM's. I picked this voltage because the voltage regulator is sure to be full off at this point yet any AGM battery will not be discharging at this voltage unless the temperature is truly extreme. I could discuss why I didn't use 12.8 or 14.2 but that is for a battery or general electrical thread.

1,280 RPM (idle) 17.7 amps at 13.6 volts
3,000 RPM 25.9 amps at 13.6 volts
4,500-7,500 RPM 27.8 amps at 13.6 volts

What does this mean??? For those of you that use terms like "electromotive force and intensity of current" Do the math, if there is some figure you really desire, ask away.

For mere mortals: If you like adding options, you are in luck, this is not a massive touring alternator but you sure didn't buy a KLR.

What loads you can safely add depends on how you are going to use it and how you use the bike.

If you plan to walk out to the garage and eye your bike as it idles for hours on end, not very much! Without any switchable loads on you have just 6.9 amps to play with, that translates to roughly 98 watts, depending on how the manufacture rated it's product as watt draw at say 14.2 volts will typically translate into fewer watts at 13.6 volts.

Screaming down the highway stopping only when you need gas you can safely add 140 watts of accessories, even with the high beams and heated grips on high the whole way. Actually you can add a bit more because as system starts to get dragged down to, say, 13.6 volts the battery will still be fine but all of our accessories will draw about 5% less then stated.

Is it bad for the charging system to heavily load it? Not even slightly bad. A PM alternator is at full load the whole time the bike is running. As apposed to how a car alternator works, a PM voltage regulator sinks excess current to ground to regulate the voltage so it is actually the same to the alternator and easier on the voltage regulator to be under more load.

Is it bad to draw the system below 13.6 volts? Yes, even at idle it is, only bad for the battery and only a little bad as long as it is above 13.6 the majority of the time.

I could go on forever about the characteristics of AGM batteries and what kills them but that too is for a different thread.

Hope this helps, feel free to ask about anything you don't understand. I like this forum because it does not spend endless hours trashing BMW and will check back often.

Oh, some perspective. A 2008 KLR650 has a 360 watt alternator, older ones had just 192 watts. A 2008 KTM 990 adventure has 450 watts. Most other similar sized bikes hover around this area so BMW is in about the middle of the road on alternator capacity.

That said, neither the KTM's or Kawasaki's alternators start to produce 90% 0f their rated output until above 5,000 RPM. BMW's alternator produces 90% of rated output at just 2,700 RPM. BMW placed a very good alternator in this bike by comparison."
SpaceManSpiff is offline   Reply With Quote
Old 03-06-2012, 09:42 AM   #14
JRWooden
Beastly Adventurer
 
Joined: Jul 2008
Location: The great state of confusion
Oddometer: 4,172
Quote:
Originally Posted by SpaceManSpiff View Post
...BMW placed a very good alternator in this bike by comparison.
With the possible exception of the stator which likes to burn out ...
http://www.advrider.com/forums/showthread.php?t=706033

But we have whispers from Joel that a fix may be around the corner....
JRWooden is offline   Reply With Quote
Old 03-06-2012, 06:39 PM   #15
SpaceManSpiff
Man of Mystery
 
SpaceManSpiff's Avatar
 
Joined: Mar 2007
Location: Tucson, Arizona
Oddometer: 1,075
thanks for the link...interesting reading
SpaceManSpiff is offline   Reply With Quote
Reply

Share

Thread Tools Search this Thread
Search this Thread:

.
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On

Forum Jump


Times are GMT -7.   It's 06:27 AM.


Powered by vBulletin® Version 3.8.5
Copyright ©2000 - 2014, Jelsoft Enterprises Ltd.
Copyright ADVrider 2011-2014